From Gap-Exponential Time Hypothesis to Fixed Parameter Tractable Inapproximability: Clique, Dominating Set, and More
نویسندگان
چکیده
منابع مشابه
Fixed parameter inapproximability for Clique and Set-Cover with super exponential time in k
A minimization (resp., maximization) problem is called fixed parameter (r, t)-hard for two r, t if there does not exist an algorithm that given a problem instance I with optimum value opt and an integer k, either finds a feasible solution of value at most r(k) · k (resp., at least k/r(k)) in time t(k) or finds in time t(k) a certificate that k < opt (resp., k > opt) in time t(k) · |I|O(1) for s...
متن کاملFixed parameter inapproximability for Clique and Set-Cover
A minimization (resp., maximization) problem is called fixed parameter (r, t)approximable for two functionsr, t if there exists an algorithm that given an integer k and a problem instance I with optimum value opt, finds either a feasible solution of value at most r(k) · k (resp., at least k/r(k)) or a certificate that k < opt (resp., k > opt), in time t(k) · |I|O(1). A problem is called fixed p...
متن کاملOn the complexity of fixed parameter clique and dominating set
We provide simple, faster algorithms for the detection of cliques and dominating sets of fixed order. Our algorithms are based on reductions to rectangular matrix multiplication. We also describe an improved algorithm for diamonds detection.
متن کاملReducing the Optimum: Fixed Parameter Inapproximability for clique and setcover in Time Super-exponential in opt
A minimization (resp., maximization) problem is called fixed parameter ρ-inapproximable, for a function ρ ≥ 1, if there does not exist an algorithm that given a problem instance I with optimum value opt and an integer k, either finds a feasible solution of value at most ρ(k) ·k (resp., at least k/ρ(k)) or finds a certificate that k < opt (resp., k > opt) in time t(k) · |I|O(1) for some function...
متن کاملFixed Parameter Inapproximability for Clique and SetCover in Time Super-exponential in OPT
Aminimization (resp., maximization) problem is called fixed parameter ρ-inapproximable, for a function ρ ≥ 1, if there does not exist an algorithm that given a problem instance I with optimum value opt and an integer k, either finds a feasible solution of value at most ρ(k) ·k (resp., at least k/ρ(k)) or finds a certificate that k < opt (resp., k > opt) in time t(k) · |I|O(1) for some function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 2020
ISSN: 0097-5397,1095-7111
DOI: 10.1137/18m1166869