From Gap-Exponential Time Hypothesis to Fixed Parameter Tractable Inapproximability: Clique, Dominating Set, and More

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed parameter inapproximability for Clique and Set-Cover with super exponential time in k

A minimization (resp., maximization) problem is called fixed parameter (r, t)-hard for two r, t if there does not exist an algorithm that given a problem instance I with optimum value opt and an integer k, either finds a feasible solution of value at most r(k) · k (resp., at least k/r(k)) in time t(k) or finds in time t(k) a certificate that k < opt (resp., k > opt) in time t(k) · |I|O(1) for s...

متن کامل

Fixed parameter inapproximability for Clique and Set-Cover

A minimization (resp., maximization) problem is called fixed parameter (r, t)approximable for two functionsr, t if there exists an algorithm that given an integer k and a problem instance I with optimum value opt, finds either a feasible solution of value at most r(k) · k (resp., at least k/r(k)) or a certificate that k < opt (resp., k > opt), in time t(k) · |I|O(1). A problem is called fixed p...

متن کامل

On the complexity of fixed parameter clique and dominating set

We provide simple, faster algorithms for the detection of cliques and dominating sets of fixed order. Our algorithms are based on reductions to rectangular matrix multiplication. We also describe an improved algorithm for diamonds detection.

متن کامل

Reducing the Optimum: Fixed Parameter Inapproximability for clique and setcover in Time Super-exponential in opt

A minimization (resp., maximization) problem is called fixed parameter ρ-inapproximable, for a function ρ ≥ 1, if there does not exist an algorithm that given a problem instance I with optimum value opt and an integer k, either finds a feasible solution of value at most ρ(k) ·k (resp., at least k/ρ(k)) or finds a certificate that k < opt (resp., k > opt) in time t(k) · |I|O(1) for some function...

متن کامل

Fixed Parameter Inapproximability for Clique and SetCover in Time Super-exponential in OPT

Aminimization (resp., maximization) problem is called fixed parameter ρ-inapproximable, for a function ρ ≥ 1, if there does not exist an algorithm that given a problem instance I with optimum value opt and an integer k, either finds a feasible solution of value at most ρ(k) ·k (resp., at least k/ρ(k)) or finds a certificate that k < opt (resp., k > opt) in time t(k) · |I|O(1) for some function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2020

ISSN: 0097-5397,1095-7111

DOI: 10.1137/18m1166869